EVALUATING AEROBIC LANDFILL BIOREACTIONS USING A NUMERICAL MODEL

By G.R. Walter, S.J. Smith, L. Major, and J. Tang

BACKGROUND

- SPACE FOR MUNICIPAL SOLID WASTE (MSW)
 LANDFILLS IS AT A PREMIUM
- DEGRADATION OF ORGANIC WASTE IN LANDFILLS IS SLOW DUE TO ANAEROBIC CONDITIONS
- CLOSED MSW LANDFILLS CAN GENERATE METHANE AND UNDERGO SUBSIDENCE FOR DECADES
- METHANE RECOVERY FOR ENERGY FROM SMALL LANDFILLS IS UNECONOMICAL

CONCEPT OF A SUSTAINABLE LANDFILL (SWITZERLAND, 1986)

- EACH GENERATION SHOULD MANAGE ITS WASTE TO FINAL STORAGE QUALITY (30 YEARS)
- FINAL STORAGE QUALITY: Any emissions to the environment are acceptable without further treatment or control
- UK FINAL STORAGE QUALITY CRITERIA
 - Reduce landfill gas generation by 99.9 % (200 cubic meters/metric ton to 0.1 cubic meters/metric ton)
 - Leachate quality determined by local environmental conditions

CONCEPT OF THE AEROBIC BIOCELL

- PURPOSE:
 - Speed the degradation of organic waste by creating aerobic conditions
- ADVANTAGES:
 - Preserve disposal space in active landfills and extend their life
 - Limit or eliminate methane production in closed landfills
 - Promote consolidation of refuse to improve future land use
- OPERATING PRINCIPLES:
 - Derived from composting science and experience

CONCEPTUAL MODEL OF AEROBIC BIOCELL

OPERATING FACTORS

WATER APPLICATION

- Maintain Desired Moisture Content to Support Microbial Population
- Replace Water Removed by Evaporation
- TEMPERATURE CONTROL
 - Aerobic Biodegradation Releases Approximately 3600 cal/gm substrate oxidized
 - Optimal Biodegradation: 40 to 60 °C (100 to 140 °F)
 - Prevent Hot Spots that May Result in Spontaneous Combustion
 - > 80 °C (180 °F)

BIODEGRADATION RATE AS A FUNCTION OF TEMPERATURE

Reference: Practical Handbook of Compost Engineering, pg.360

HYDRO GEO CHEM, INC.

PRIMARY HEAT REMOVAL PROCESSES

- VAPORIZATION OF WATER
- ADVECTIVE TRANSPORT OF HEAT IN AIR FLOW

VAPORIZATION OF WATER

THERMAL PROPERTIES OF WET AIR

PROCESSES SIMULATED

• AIR FLOW

DARCY'S LAW APPLIED TO COMPRESSIBLE FLUID
LINEARIZED

- HEAT TRANSPORT
 - ADVECTION IN AIR FLOW
 - CONDUCTION THROUGH SOIL
 - HEAT CAPACITY OF AIR FUNCTION OF TEMPERATURE AND WATER CONTENT (ABSOLUTE HUMIDITY)
- OXYGEN TRANSPORT
 - ADVECTION AND DISPERSION IN AIR FLOW
- BIOGENIC HEAT PRODUCTION
 - IMMOBILE SUBSTRATE (REFUSE)
 - HEAT GENERATION FUNCTION OF:
 - Temperature
 - Oxygen (Monod Rate Equation)

COUPLED, NON-LINEAR PROCESSES

- HEAT FLOW, HEAT GENERATION, AND OXYGEN TRANSPORT ARE COUPLED
- SIMPLIFICATIONS IN MODEL
 - AIR FLOW PROPERTIES NOT DEPENDENT ON TEMPERATURE
 - TRANSPORT EQUATIONS DECOUPLED (LINEARIZED)
 - ACCURACY CONTROLLED THROUGH TIME STEP
 - AIR ASSUMED TO APPROACH 100% HUMIDITY RAPIDLY IN REFUSE

COMPLEXITIES ASSOCIATED WITH USING WELLS

- AIR FLOW RATE DECREASES RADIALLY FROM WELL
- ASSUMING ADEQUATE OXYGEN AND EQUAL TEMPERATURE, BIODEGRADATION RATE IS CONSTANT

RELATIVE REACTION RATE VS GAS OXYGEN CONTENT

TEMPERATURE AND OXYGEN VS DISTANCE

SUMMARY

- AEROBIC BIODEGRADATION REACTIONS ARE GOVERNED BY COMPLEX INTERACTION BETWEEN AIR CIRCULATION RATES AND TEMPERATURE
- THESE INTERACTIONS CAN LEAD TO INTERESTING AND SOMETIMES SURPRISING BEHAVIOR (AT LEAST IN NUMERICAL MODELS)
- THE MODELS DISPLAY SELF-LIMITING BEHAVIOR IN TERMS OF TEMPERATURE REGIME

T, O₂, and BIORATE AFTER 20 DAYS

